Showing posts with label Electronic Power Control. Show all posts
Showing posts with label Electronic Power Control. Show all posts

Saturday, February 10, 2024

Automotive Electronics

Automotive Electronics

Automotive electronics represent a significant chapter in the success story of the 20th century's electronics industry. This field has given birth to a plethora of innovations, from electronic components and printed circuit board design to the internet, computers, fiber networks, communication protocols, wireless transmission, and cell phones, among others. The impact of electronics spans across various sectors, including automotive, aerospace, and medical industries.

In the automotive sector, electronics have ushered in a new era of innovation, revolutionizing the modern-day automobile. From basic radio systems to autonomous vehicles capable of operating without human intervention, the integration of advanced electronic technologies has reshaped the automotive landscape. However, many of these advancements have been spurred by government mandates, such as On-Board Diagnostics (OBD).

On-Board Diagnostics has played a crucial role in the automotive industry's response to global warming, greenhouse gas emissions, and climate change. Mandated by legislation and driven by international initiatives like the United Nations Framework Convention on Climate Change (UNFCCC), OBD systems are designed to monitor and control vehicle emissions, contributing to environmental sustainability efforts.

The evolution of OBD from its inception to the current OBD-II standard has been instrumental in regulating vehicle emissions and promoting fuel efficiency. With the implementation of microprocessor-driven Engine Control Units (ECUs), manufacturers can optimize engine performance and reduce exhaust emissions effectively. However, this shift has also posed challenges for auto repair shops, necessitating the development of third-party diagnostic software compatible with OBD-II systems.

Tools like VCDS, OBD Auto Doctor, and Advanced Driver Assistance System (ADAS) have become essential for mechanics to communicate with ECUs and diagnose engine issues effectively. Additionally, the standardization of protocols like ISO14230-4 (KWP2000) and ISO 15765 CAN network has facilitated seamless communication between vehicles and diagnostic equipment.

The integration of catalytic converters, O2 sensors, and various other components into modern vehicles has become standard practice, contributing to cleaner and more efficient engines. However, this comes with an additional manufacturing cost, ultimately borne by consumers. Furthermore, it has necessitated continuous learning and adaptation among mechanics to keep pace with the rapid advancements in automotive electronics, mirroring the challenges faced in the medical industry with the advent of electronic medical equipment.

In essence, automotive electronics have reshaped the way vehicles are designed, manufactured, and maintained, ushering in an era of innovation and environmental responsibility. As technology continues to evolve, so too will the role of electronics in shaping the future of transportation.

 

Monday, February 5, 2024

Unlocking the Mysteries of Automotive Diagnostics

Unlocking the Mysteries of Automotive Diagnostics


In the intricate world of modern automotive technology, the ability to diagnose and troubleshoot issues has become an indispensable skill for both mechanics and car enthusiasts. One of the key frameworks governing this diagnostic landscape is the Onboard Diagnostics (OBD) system, specifically the second iteration, OBD-II, which adheres to the standards set by the Society of Automotive Engineers (SAE).

SAE and OBD-II Standards:

The SAE plays a crucial role in establishing standards that govern automotive diagnostics. In the context of the VW Polo and many other vehicles, OBD-II is the standardized system designed to monitor and report the performance of various vehicle systems, ensuring compliance with emission regulations.

Stoichiometry and Emission Control:

Understanding stoichiometry is fundamental to comprehending OBD-II's role in emission control. Stoichiometry refers to the chemically balanced ratio of air to fuel necessary for complete combustion. OBD-II monitors this ratio through sensors, with the Oxygen Sensor System (OXS) playing a pivotal role in providing feedback to the engine control module (ECM).

EPC Light - Electronic Power Control:

One of the telltale indicators of an issue within the electronic realm of the VW Polo is the Electronic Power Control (EPC) light. This warning light illuminates when the system detects a fault affecting the engine's performance. The EPC system is responsible for managing the throttle, ensuring optimal power delivery and efficiency.


Universal OBD-II tester


Check Engine Light and DTC Codes:

The infamous Check Engine Light (CEL) is another beacon of concern for drivers. When illuminated, it signals potential issues with the engine or emissions system. Diagnostic Trouble Codes (DTC), communicated through the OBD-II system, provide mechanics with specific information about the nature of the problem, allowing for a targeted and efficient diagnosis.

Limp Mode and Safety Features:

In the event of a critical issue, the VW Polo employs a safety feature known as Limp Mode. This mode restricts the vehicle's performance to prevent further damage, allowing the driver to reach a service center safely. Understanding the triggers for Limp Mode requires decoding the specific DTCs stored in the OBD-II system.

Sensors, Senders, and Actuators:

Central to the OBD-II system are an array of sensors and senders strategically placed throughout the vehicle. These components, such as the Oxygen Sensor, monitor various parameters and relay information to the ECM. Actuators, controlled by the ECM, respond to these inputs by adjusting engine functions to maintain optimal performance and emissions.

16-Pin OBD-II Connector:

Mechanics rely on the 16-pin OBD-II connector to interface with the vehicle's diagnostic system. This standardized connector provides access to the wealth of information stored within the OBD-II system, facilitating precise diagnosis and troubleshooting.

Automotive Acronyms:

Navigating the world of automotive diagnostics often involves deciphering a myriad of acronyms. From EPC to DTC,to HVAC, to OXS, to EGR and beyond, mechanics adeptly use these shorthand terms to  efficiently communicate and clients and pinpoint issues with precision.However, it can confuse the hell out of them.

Delving into the realm of automotive diagnostics for the VW Polo unveils a sophisticated interplay of technologies governed by SAE standards and OBD-II protocols. Mastery of these systems empowers mechanics to unravel complexities, ensuring optimal performance and emission control for vehicles on the road. 

As technology continues to advance, a deep understanding of automotive acronyms and diagnostic intricacies remains paramount for those entrusted with keeping our vehicles running smoothly. However, it would be feasible even advisable for vehicle owners to get get up to speed with Automotive technology. Technology is here to stay and no matter how hard we try, cannot will it away.



Wednesday, August 24, 2022

That EPC light

That EPC light.

The most likely reason you're reading this blog post, is because you encountered an EPC fault with your Volkswagen vehicle. I bet you wondered what that yellow/orange light was when it lit-up or perhaps startled when you car went into "limp mode". Whether you're driving a VW Polo or VW Jetta, VW Golf,  VW Caddy, VW Passat, T-Cross, Sharan, Touareg, Transporter, or any other Volkswagen or even a German Audi, or a Czech Skoda or a Spanish VW SEAT, you've come to the right place because they all have an  Electronic Power Control circuit. 



In fact all "modern day" vehicles have EPC circuit, which loudly says that the automotive industry have finally reached some consensus on standardization. But let me tell you what the EPC light actually is. It's just a signal light informing you that there is an error in your vehicles torque circuit. That's the short answer, however, I can tell by the look on your face that it wasn't a  satisfactory answer, so let me give you the long version.

The EPC light is part of the Electronic Power Control Circuit which is just one of the components of OBD-II which was mandated by a certain regulatory bodies with regulatory intent. Their initial intention was to limit carbon emissions / exhaust fumes from cars on the street of America. 

The California Air Resources Board (CARB) and the Environmental Protection Agency (EPA) together with the Society of Automotive Engineers (SAE) and the International Organization for Standardization (ISO) collectively originated the On-Board Diagnostic (OBD) System because of high levels of smog produced by automobiles throughout the USA.  

Their initial On-Board Diagnostic System was subsequently superseded by the all new and improved verion OBD-II, hence all cars manufactured post 1996 has an Electronic Power Control Circuit and by extension an EPC light. The European on-board diagnostics (EOBD) regulations are the European equivalent of the American OBD-II. 

On-Board Diagnostic (OBD-II) is an automotive mechatronic, micro processor / micro controller based computer system with programmed presets that continuously monitors inputs from numerous sensors fitted through the car. 

It then computes/compares/ compensates these inputs against stored data and drives various actuators to perform certain tasks. In a nutshell OBD-II is an input/output (I/O) information processing system much like the PC / laptop / or even your smart phone. By example, a keyboard, a mouse, a joystick, a scanner and a microphone are common computer input devices whereas a HD monitor, a printer, speakers and headphones are common computer output devices. 

Here the computer/laptop makes calculations based on its internal operating system and software to do something intelligible for humans. However in the case of OBD-II, its CPU (Central Processing Unit) is called an ECU (Electronic Control Unit) and among its input sensors are the Accelerator Position Sensor, Mass Air Flow sensor (MAF), Lambda O2 Sensor, Knock sensor, Oli level sensor, Coolant Temperature Sensor, the Camshaft Position Sensor, the Crank Position Sensor, the Wheel Speed  Sensor etc, to mention but a few.

Among its output actuators and solenoids are the drive-by-wire electronic throttle actuator, the fuel injectors, the EPC light, Malfunction Indicator Light (MIL), the Immobilizer, the Airbags and the Power Steering Pump, etc, again to mention but a few,

This ECU is sometimes referred to as an Engine Control Unit especially when intending to make reference to the TCU (Transmission Control Unit). The ECU is sometimes even called ECM (Engine Control Module) when making reference to other electronic control modules like the ABS module, the Instruments module, the Central Electronics Module, the CAN gateway module, the Radio Module, etc, again to mention but a few 

However, the ECU and the TCU are collectively referred to as Powertrain Control Module (PCM). The ECM essentially controls the efficiency of the engine performance by using a Crankshaft Position Sensor to determine the position of the cams in order to activate the injection of fuel into the cylinders and the timing of the ignition spark to ignite it at precisely the correct moment in petrol engines. 

Likewise the ECM in Diesel engines, plays a huge role in the success of the turbodiesel models. But in order for this to happen, an electronic throttle control had to be introduced, replacing the  cable from the pedal to the carburetor system which was prone to idle speed deviation between a hot and cold engine that became more and more prevalent as the components wore out. 

In so doing, the ECM can adjust the electronic throttle angle during acceleration to achieve the right quantitative relationship ratio between the actual airflow through the engine and the injected fuel thus maintaining Stoichiometry. Controlling the throttle airflow on the fly, markedly improves overall torque and driveability which is known as torque-mapping, an advantage that is only possible with drive-by-wire. 

So, the Electronic Power Control Circuit consists of the ECM, the Accelerator Position Sensor, the Throttle Position Sensors, the Throttle Actuator, the MAF / Air Filter, the Fuel Injectors, the High Pressure Fuel Pump, Fuel Temperature Sensor, Fuel Rail Pressure Sensor and Pressure Relief Valve. 

The single accelerator position sensor is made up of two individual potentiometers each acting independently of the other but collectively operate with opposite polarity voltages supplied by the ECM, as a safety back-up for one another. 

Thus, if either potentiometer fails, the ECM will activate limp mode. This is a safety measure that prevents the system from acting as if it had an accelerator cable that got stuck in the runaway position and the makings of a potential accident. The cruise control also has influence on the throttle body and requires the brake pedal to be depressed to cancel the cruise control. 

The ECU normally takes this cancellation signal from the brake light MOSFET low-side driver in the ECU. So either the brake pedal switch and the a brake light bulb can cause an EPC error along with the aforementioned fuel supply components. It's best to have a diagnostic tester to check for DTC errors via the DLC connector. It would at the very least steer you in the right direction to fix your EPC problem effectively.

Electronic Power Control (EPC)

Electronic Power Control (EPC)

It was very surprising to discover how many thousands if not millions of car owners out there, have no idea exactly what  Electronic Power Control (EPCis. Yet most of them would like to know what the Electronic Power Control (EPC) circuit really does , more especially the Volkswagen, Audi, Seat and Soda owners. 

Considering they've been plagued by the Electronic Power Control (EPC) light, limp mode, DTC errors and poor engine performance to the point of frustration and panic for a number of years. Nobody seems to be able to give them good advice or practical guidance; and in many cases not even the Volkswagen, Audi, Seat and Skoda agents can. 

Leaving VW owners confounded, disappointed and disillusioned by their choice in cars, which results in so many car owners swearing, never to invest in VW brands ever again.

Unscrupulous motor mechanics tend to take advantage of these situations, recommending that the car owner brings their car to them as soon as possible before damage occurs to the engine.  Whereas in fact, the Electronic Power Control (EPC) is a safety circuit designed to prevent damage to the engine. 

When the  Electronic Power Control (EPC) mode does engage, it can and often does affect the car's stability and cruise control and torque circuit giving the impression there is a lot more wrong than there actually is. 

Since the Electronic Power Control (EPC) is "yellow" and not red, it acts more as an advisory light rather than a warning light, even though everybody tends to call it a warning light. A  flashing amber light is considered a "warning signal" but still doesn't have the danger status of "red warning light"

 


Technically the "yellow" Electronic Power Control (EPC) light is in fact  amber which is a blend between orange and yellow. Car dashboard light colours can be roughly divided into three categories. 

Warning lights are Red in colour. Advisory lights are  amber in colour and information lights are generally either white, green or blue in colour. Having said that, its simple to understand that amber implies that you should keep an eye on, or be prepared for either  a reduction in power or  interruption to power.

Hence, Amber lights are used as Indicator lights (flashers) on cars for the turn signal and hazards. Amber lights are also used by roadside breakdown vehicles to alert drivers. An amber traffic light is generally considered a cautionary light, signalling  readiness to stop. Much like an amber  traffic light does. 

Now that you know what the colours of the lights imply, allow me to give you the low-down on Electronic Power Control (EPCitself. EPC is an acronym and it is the official abbreviation for Electronic Power Control

Electronic Power Control is an embeded system, specifically designed into electronic circuits that permits it be part of a larger electro-mechanical system.  An Electronic Power Control system can also simply be described as a self-contained "feedback" circuit.  

It can even be further  explained, as a microprocessor based electronic circuit -or a computer if you like- that alters its output bias based on its inputs. Its "status quo" or current baseline is taken as a reference point and the objective is to control its operation within its predetermined parameters, and as close as possible to the said baseline, based on the signals from its inputs. 

Should any of these inputs, that predominantly come from sensors fail, for whatsoever reason, the computer circuit wouldn't be unable to complete its processes and would either enter into a "compensatory state"a "warning state" or an "error state"But more about this later!

The Electronic Power Control circuit has become standard equipment as part of the OBD-II (On-board Diagnostics 2) system in all modern day cars, manufactured since 1996. The Electronic Power Control is an integral part of every computerized ignition and engine management system, embedded into the ECU (elcectronic computer unit). 

The Electronic Power Control (EPC) dashboard advisory light is also part of this system and is normally activated by errors in the vehicle's torque circuit but not exclusively. The Electronic Power Control (EPC) light is  actually  "new" addition to the plethora of light on the more modern vehicle's dashboards, a light  that gives any driver a sense of despair when it turns on. 

But more about that later ...

However, since a full blown explanation is outside the scope of a single blog-post, it is imperative that you need to read  every blog installment or the entire blog to get the full Electronic Power Control (EPC) picture.

____________________________________________________________________
vw polo fault codes list, vw polo power steering failure, epc light vw polo loss of power, vw polo power steering not working, vw polo epc light and loss of power, vw polo power steering reset, vw polo engine management light loss of power, vw polo limp mode, vw polo 1.4 engine problems, vw polo limp mode, epc vw polo, vw polo common faults, vw login codes, vw polo door lock problem, vw polo throttle body problems, vw 01044, vw polo fuel pump problems, vw polo power steering fuse location, vw polo power steering pump problem, volkswagen polo fuel pump problem, epc light vw polo, vw polo central locking problems, epc polo, vw polo accelerator problems, vw polo power steering sensor location, vw polo error codes, vw polo epc, polo power steering not working, vw relay numbers, vw polo epc light, Accelerator Pedal Position Sensor 2 G185, Accelerator Position Sensor G79, Volkswagen, DTC, On Board Diagnostic, Body Codes, Bluetooth OBDII Scanner, vehicle diagnostics, OBD2,OBD-II, CAN bus, OBD2 parameter IDs (PID), OBD2 scanner, Diagnostic Trouble Codes (DTCs), 16 pin OBD2 connector, DLC, ISO 11898, SAE J1962, OBD3/OBD-III, CAN logger, B codes, WiFi, OBD2 frames, IoT logger, OBD2 Data, OBD2 blackbox, Scanner, Network Codes, Diagnostic tools, Code Reader,Mobile Car Diagnostics, OBD-11 Scanner,OBD dongle, J1939, diagnostics,universal codes,Diagnostic trouble codes,Check Engine Light, P codes, C codes, ISO 15765, U codes, car diagnostic tests, CPU,OBD Cables, Diagnostic cables, Key programming, fuel management system,engine control unit, EPC light, limp mode

Thursday, February 24, 2022

The Most Common Car Problems

The Most Common Car Problems

There was a time when car owners could easily service their own cars. Simply replacing points, plugs and condensors,  draining its oil and replacing its oil and oil filter normally put the car back on the road again. Those were the days when the most common roadside problem was a puncture or a snapped fan belt. Punctures were easily fixed with a replacement tyre from the trunk. All that was needed was some elbow grease applied to the jack, wheel brace and wheel nuts and you were on the road again. But today rollbacks are are integral part of motoring. Hundreds of cars are loaded up everyday on the road side.


VW Polo on a roll back going to workshop


The main cause of punctures was attributed to poor road surfaces, random metal objects and broken glass and to a lesser degree older tyre technology. Even though punctures were predominant, they were by no means exclusive to roadside breakdown because clutch plates and gearbox problems were also plentiful, as was running out of fuel.


Volkswagen Polo on a roll back

With the advent of newer cars, the race for the most fuel efficient and least expensive car was on. When fuel and air stoichiometrics were at its peak, car manufactures started producing cars with a 'Space Saver Biscuit Spare Wheel' which took several kilograms of weight out of the trunk, This made the car a tad lighter, slightly more fuel efficient and ever so slightly, cheaper to produce.

Today, almost a third of all new cars don't even have a spare wheel; instead they may be equipped with a can of self inflating puncture-repairing foam, or an electrical air compressor with some sealant kit to temporarily fix a flat tyre. Both options are evidently cheaper than a Space Saver Biscuit Spare Wheel and lighter.



However, believe-it-or-not, the more expensive cars today, are sold without  a spare wheel, instead they are fitted with “run-flats”. In a nut-shell, run flats are special pneumatic tyres, designed to resist the effects of deflation when punctured, yet enables the car to  be driven at reduced speeds of under 90 km/h for a distance of up to 80 km. The speed and distance of course to the nearest tyre repair shop, is subject to the type and quality of the run-flats.  So, once again the manufacturer saves the cost of supplying a spare wheel.

Car on rollback

Be that as it may, snapped fan belts  often causing the engine to overheat, sometimes resulted in a  blown  cylinder head gasket. Subsequently, the modern day electric radiator fan has totally supperceeded the belt driven fan and as a result, burst radiator hoses, corroded, leaking water pumps and welch plugs have  became the primary cause  of blown cylinder head gaskets. The other bugbear is oil leaks that weren't timeously attended to, currently trending as the most common cause of seized engines. 

With the abundance of electronics fitted into cars, the alternator  and its voltage regulator have  became a lot more more troublesome than ever before. Obviously due to the additional electrical load.  Alternator  problems are closely followed by starter issues when either its brushes or its  bendix reaches its end of life.   



Both types of problems have resulted in batteries being replaced prematurely and sometimes unnecessarily. Brakes and Turbos also give their fair share of problems, but none of these problems comes close to the new type of roadside breakdowns caused by the OBD-II system.

The most common cause of  breakdowns today, is the Electronic Power Control (EPC) light; not that the light is the cause of the problem. The Electronic Power Control (EPC) light is only an advisory light, drawing your attention to a possible malfunction or  pending problem or  already existing problems.



When the Electronic Power Control (EPC) light comes on, without the ESP or Check  engine light, the car is normally still driveable, even if it goes into limp mode. But when accompanied by the ESP and or CEL (check engine light) the car may refuse to start as its inhibited by the Electronic Computer Unit (ECU). 

When this happens, the only solution is to secure a rollback to fetch the car and take it either to your service agent / mechanic or your home, so that you can tend to the problem yourself. 

There is no way you'd be able to effect repairs to your car yourself without a OBD II scanner   that would direct you to, or confine your repair to a certain area of the engine. 

ODB-II problems not limited to VW.

Below are a few sample yet partial ODB II diagnostic scans  for Electronic Power Control (EPC) problems. 

This for a 7N0 - VW Passat.
Address 01: Engine (CDL)       Labels: 06F-907-115-CDL.clb
   Part No SW: 1P0 907 115 AB    HW: 8P0 907 115 B
   Component: 2.0l R4/4V TFSI     0020  
   Revision: 5BH20---    Serial number: 0000              
   Coding: 0303004C18070160

1 Fault Found:
008487 - Accelerator Position Sensor 2 (G185) 

               P2127 - 002 - Signal too Low


Electronic Power Control (EPC) problem  for a 1J - VW Golf.

Address 01: Engine Labels: 06A-906-032-AWP.lbl
Part No: 06A 906 032 RN
Component: 1.8L R4/5VT G 0001 
Coding: 07510

18047 - Accelerator Position Sensor 1/2 (G79/G185) 
            P1639 - 35-00 - Implausible Signal
18042 - Accelerator Position Sensor 2 (G185) 

            P1634 - 35-10 - Signal too High - Intermittent



Electronic Power Control (EPC) problem  for a 7L - VW Touareg 

Address 02: Auto Trans        Labels: 09D-927-750.lbl
   Part No: 09D 927 750 AN
   Component: AL 750 6A           0546  
   Coding: 0004153


1 Fault Found:
00777 - Accelerator Position Sensor (G79) 

            004 - No Signal/Communication - MIL ON


NB! The Automatic Transmission module and not the Engine Module detected this accelerator sensor problem.

 


Electronic Power Control (EPC) problem 1H - VW Golf/Vento III
Address 02: Auto Trans       Labels: 01M-927-733.LBL
   Controller: 01M 927 733 CT
   Component: AG4 Getriebe 01M    3363
   Coding: 00000
    

1 Fault Found:
00518 - Throttle Position Sensor (G69)

            16-10 - Signal Outside Specifications - Intermittent


NB! The Automatic Transmission module and not the Engine Module detected this accelerator sensor problem. Here the Throttle position sensor instead of the Accelerator sender is the cause of the problem.


Electronic Power Control (EPC) problem  for a 9M - VW Jetta IV.
Address 01: Engine Labels: 06A-906-032-AWP.lbl
Part No: 06A 906 032 RN
Component: 1.8L R4/5VT G 0001 
Coding: 07510

1 Fault Found:
18047 - Accelerator Position Sensor 1/2 (G79/G185

P1639 - 35-00 - Implausible Signal 



Electronic Power Control (EPC) problem  for a 8E - Audi A4.
Address 01: Engine Labels: 06C-909-559-ASN.lbl
Part No SW: 8E0 909 559 D HW: 8E0 909 059 
Component: JHM V3/9X G 0003 
Coding: 0016751

2 Faults Found:
18047 - Accelerator Position Sensor 1/2 (G79/G185) 
P1639 - 008 - Implausible Signal - Intermittent
18047 - Accelerator Position Sensor 1/2 (G79/G185) 

P1639 - 008 - Implausible Signal - Intermittent - MIL ON



Electronic Power Control (EPC)  for a 8P - Audi A3.
Address 01: Engine Labels: 06A-906-033-BGU.lbl
Part No: 06A 906 033 DS
Component: SIMOS71 1.6l 2V 5559 
Revision: --H03--- Serial number: AUX00000
Coding: 0000071

4 Faults Found:
18047 - Accelerator Position Sensor 1/2 (G79/G185)

P1639 - 008 - Implausible Signal - Intermittent



Electronic Power Control (EPC) problem  for a 9M - VW Jetta IV


Address 01: Engine Labels: 06A-906-032-AWP.lbl
Part No: 06A 906 032 LP
Component: 1.8L R4/5VT G 0005 
Coding: 07500

18042 - Accelerator Position Sensor 2 (G185) 
P1634 - 35-00 - Signal too High
18039 - Accelerator Position Sensor (G79) 

P1631 - 35-00 - Signal too High



 Electronic Power Control (EPC) problem  for a 1C - VW New Beetle

Address 02: Auto Trans Labels: 01M-927-733.lbl
Part No: 01M 927 733 EN
Component: AG4 Getriebe 01M 4108
Coding: 00000

1 Fault Found:
00518 - Throttle Position Sensor (G69)

16-10 - Signal Outside Specifications - Intermittent

NB! Once again the Automatic Transmission module  detected this Throttle position sensor instead of the Engine Module detecting the Accelerator sender to be the cause of the problem.

___________________________________

As can be seen from the data above,  there are essentially 3 types of  DTC errors responsible for triggering the EPC light, though not exclusively. P codes  P1630 and P2122;  P1631 and P2123;  P1632 and P1861 are essentially the same and applies to sender 1. 

As can be seen below.
P1633 and  P2127;  P1634 and P2128; P1639 and P2138 are essentially the same but applies to sender 2. There are also several other DTC errors that can and trigger the EPC and or along with the ESP, and or with the CEL.

Accelerator Pedal Sensor 1

P1630 - Accelerator Pedal Pos. Sensor 1 (G79), Signal too Low
P1631 - Accelerator Pedal Pos. Sensor 1 (G79), Signal too High
P1632 - Accelerator Pedal Pos. Sensor 1 (G79), Power Supply Malfunction

P2122 - Accelerator Pos. Sensor 1 (G79), Signal too Low
P2123 - Accelerator Pos. Sensor 1 (G79), Signal too High
P1861 - Accelerator Pos. Sensor 1 (G79), Error Message from ECM

Accelerator Pedal Sensor  2

P1633 - Accelerator Pedal Pos. Sensor 2 (G185), Signal too Low
P1634 - Accelerator Pedal Pos. Sensor 2 (G185), Signal too High
P1639 - Accelerator Pedal Pos. Sensor 1/2 (G79) / (G185), Implausible Signal

P2127 - Accelerator Pos. Sensor 2 (G185), Signal too Low
P2128 - Accelerator Pos. Sensor 2 (G185), Signal too High
P2138 - Accelerator Pos. Sensor 1/2 (G79) + (G185), Implausible Signal

Throttle Position Sensor

16505/P0121/000289 - TPS (G69): Implausible Signal
16506/P0122/000290 - TPS (G69): Signal too Low
16507/P0123/000291 - TPS (G69): Signal too High

Throttle Angle Sender 1

17950/P1542/005442 = Angle Sensor 1 for Throttle Actuator (G187): Implausible Signal
17951/P1543/005443 = Angle Sensor 1 for Throttle Actuator (G187): Signal too Small
17952/P1544/005444 = Angle Sensor 1 for Throttle Actuator (G187): Signal too High 
 

Throttle Angle Sender 2

16605/P0221/000545 - Angle Sensor 2 for Throttle (G188): Signal   Implausible 
16606/P0222/000546 - Angle Sensor 2 for Throttle (G188): Signal Too Low
16607/P0223/000547 - Angle Sensor 2 for Throttle (G188): Signal Too High


Depending on the model of your vehicle, its Throttle position sensor (TPS) lowest output voltage should be around .17 Volt and when the Electronic Control Unit (ECU) detects that it has dropped below that, then it will trigger either a P0122 or P0222 code.  High signals are not common but they do occur. 

 

As can be seen from the above data the error signal is either too low or to high or intermittent/implausable. Bearing in mind that a constant 5 volts is supplied by the ECU via a High-side or Low-side driver to the each of these potentiometers (senders). Loss of the voltage or even intermittently loss will trigger the EPC light and enter into "limp mode".

By implication  the monitored output is in 1 of 3 states, viz, low, high, or intermittent. In order to determine these states, the ECU needs a reference to compare these signals against. Each sender therefore act as a reference for another and any discrepancy between the two can result in an EPC error and subsequent limp mode. 

Replacing the Accelerator Pedal sensor (potentiometer)  unit normally fixes the EPC problem, but limp mode can also be caused by the throttle butterfly potentiometer.  And like I mentioned before, an OBD-II diagnostic tester would make this repair a lot easier and a lot faster.


NB! When your car goes into "limp mode", you may have  a lit   "Engine Management Light" (EPC icon) and or a "Electronic Stability Light" (skidding car icon) and or a "Engine Control Lamp" (engine icon) or any other combination thereof.  


Even Earthworks machinery are fitted with OBD-II so that exhaust emissions can be controlled but when there is a problem in the OBD-II system, invariable these machines would have to go on a roll back and taken for repair.

 

vw polo fault codes list, vw polo power steering failure, epc light vw polo loss of power, vw polo power steering not working, vw polo epc light and loss of power, vw polo power steering reset, vw polo engine management light loss of power, vw polo limp mode, vw polo 1.4 engine problems, vw polo limp mode, epc vw polo, vw polo common faults, vw login codes, vw polo door lock problem, vw polo throttle body problems, vw 01044, vw polo fuel pump problems, vw polo power steering fuse location, vw polo power steering pump problem, volkswagen polo fuel pump problem, epc light vw polo, vw polo central locking problems, epc polo, vw polo accelerator problems, vw polo power steering sensor location, vw polo error codes, vw polo epc, polo power steering not working, vw relay numbers, vw polo epc light, Accelerator Pedal Position Sensor 2 G185, Accelerator Position Sensor G79, Volkswagen, vw polo fault codes list, vw polo power steering failure, epc light vw polo loss of power, vw polo power steering not working, vw polo epc light and loss of power, vw polo power steering reset, vw polo engine management light loss of power, vw polo limp mode, vw polo 1.4 engine problems, vw polo limp mode, epc vw polo, vw polo common faults, vw login codes, vw polo door lock problem, vw polo throttle body problems, vw 01044, vw polo fuel pump problems, vw polo power steering fuse location, vw polo power steering pump problem, volkswagen polo fuel pump problem, epc light vw polo, vw polo central locking problems, epc polo, vw polo accelerator problems, vw polo power steering sensor location, vw polo error codes, vw polo epc, polo power steering not working, vw relay numbers, vw polo epc light, Accelerator Pedal Position Sensor 2 G185, Accelerator Position Sensor G79, Volkswagen, DTC, On Board Diagnostic, Body Codes, Bluetooth OBDII Scanner, vehicle diagnostics, OBD2,OBD-II, CAN bus, OBD2 parameter IDs (PID), OBD2 scanner, Diagnostic Trouble Codes (DTCs), 16 pin OBD2 connector, DLC, ISO 11898, SAE J1962, OBD3/OBD-III, CAN logger, B codes, WiFi, OBD2 frames, IoT logger, OBD2 Data, OBD2 blackbox, Scanner, Network Codes, Diagnostic tools, Code Reader,Mobile Car Diagnostics,OBD-11 Scanner,OBD dongle, J1939, diagnostics,universal codes,Diagnostic trouble codes,Check Engine Light, P codes, C codes, ISO 15765, U codes, car diagnostic tests, CPU,OBD Cables, Diagnostic cables, Key programming, fuel management system,engine control unit, EPC light, limp mode

Sunday, December 27, 2020

Limp Mode Scan codes

LIMP MODE


Limp mode has hit car owners like a pandemic, a pandemic that was pre-planned by the automotive industry, knowing full well that most car owners would be at a loss to repair it themselves and that it was  going to be a source of steady profit, a bonanza, a money spinner, a cash cow, a golden goose for them.

Virtually every car owner have experienced the wrath of Limp mode at some time or the other and are often helpless when it happens. Those of you who haven't had the displeasure of encountering Limp mod surely will, its just a matter of time - virtually guaranteed.

STANDARD FEATURE

Limp mode is a standard feature programmed into all post-1996 vehicles to protect their engines and driver / passenger when something goes awry with its EPC system, steering or braking system, etc.  The ever-aware sensing software will activate this feature when it detects abnormal readings from sensors, or compromised mechanical part operations that could potentially cause damage to the vehicle or harm to its occupants.

Every time when Limp mode is triggered the ECU will store a DTC in its non-volatile memory for later retrieval. And since Limp mode can be caused by any of several different engine components, the only way to track down the Limp mode problem is by way of a OBD-II scan tool. Scan tools may be considered the vaccines against this Limp mode pandemic, implying only those who have one will be able to fix their own cars.

ON BOARD DIAGNOSTICS

OBD-II (on-board diagnostics ver2) gave rise to a scan tool market and these scan tools comes in several makes and models, with capabilities ranging from the most basic to the most intricate costing from as little as a few bucks to tens of thousands. Most of the low end scan tools are VW compatible though some are not, whereas all the high end scan tools are compatible to virtually all cars, trucks and bikes.

SCAN TOOL

So, if your a car owner / DIY mechanic, it is imperative to get yourself a decent  aftermarket VW-Audi diagnostic scan tool. If you own an Audi,  Porsche, Bentley, Bugatti, Lamborghini,  SEAT, Škoda or Volkswagen I would suggest that you invest in the USB Cable KKL 409.1 VAG-COM Auto Scanner Scan Tool for VW/Audi (Blue) for starters. This cable supports the ISO9141 and KWP2000 transmission protocols and is usable with VCDS lite downloadable from the Ross tech website absolutely free. I started out with this rig and later bought several dedicated scan tools as well as bluetooth dongles that work with cellphones and software for my tablet. None as good or even comparable to VCDS (VAG-COM) HEX-V2 which surpasses the performance of most generic OBD-II tools, but its VW specific.

ELECTRONIC POWER CONTROL

Limp mode limits the amount of power to your engine and transmission thus delivers poor engine performance. EPC (electronic power control) may be lit and Malfunction Indicator Lamp (MIL)(K83) may also be lit. 


Limp mode scan codes:-

000289 (P0121) - Throttle Position Sensor (G69): Implausible Signal

000290 (P0122) - Throttle Position Sensor (G69): Signal too Low

004243 (P1093) - Bank 1; Fuel Measuring System 2

000545 (P0221) - Angle Sensor 2 for Throttle (G188): Implausible Signal  

000808 (P0328) - Knock Sensor 1 (G61) Signal too High - Intermittent

05445 (P1545) - Throttle valve control system, Malfunction

05464 (P1558) - EPV throttle Drive - G186, Electrical malfunction in circuit

01314 - Engine control module / No Communications

17252 (P0868) - Transmission Fluid Pressure Adaptation at Limit
             

WIRING HARNESS

As can be seen from the above, all these Limp mode scan codes / faults are associated with a VW wiring  harness problem and is normally a connector problem but it can also be the a failed throttle body, a knock sensor, the torque circuit, a brake light. The gears inside of the throttle body can strip or becomes clogged with dirt. Remember the last resort is a failed engine control unit (ECU).



Saturday, December 26, 2020

Electronic Vehicle Architecture

Electronic Vehicle Architecture

The Electronics  Industry has had the fastest growth in the shortest amount of time, when compared to any other industry worldwide.  But before I expound on that, let me just say that, the invention of numerous mechanical contraptions during the late 1800s, like  James Watt's steam engine for example, started the transition towards new manufacturing processes which collectively gave rise to thIndustrial Revolution. Much later Samuel Finley Breese Morse invented the single-wire electric telegraph system and developed the Morse  Code. 

A bit of History

Sometime thereafter Alexander Graham Bell invented the first practical telephone system. Their's and the collective  efforts of so many others, without discounting anyone's  inventions and efforts, changed telecommunications forever. Ancient records show that  the first streets of Baghdad were paved with tar, that the Babylonians used asphalt to construct the walls and towers of Babylon.  The I-Ching even bears testimony to the fact that the cites of China used oil, extracted in its raw state some  2000 years ago before refining was first  discovered. Implying that the petroleum industry is not new, but that the current status of petroleum is a key component of politics,  technology and society today.

No tot digress, tar, crude oil and pitch, were used as a sources of fuel long before paraffin was even distilled from it. The thin distilled  paraffin was normally used as fuel for lamps whereas several hundreds of years later, the thicker residue was used to lubricate machinery. In and around the  time when oil/gas/fuel/petroluem was extracted from coal, Étienne Lenoir successfully built the internal combustion engine and innovated by Nikolaus Otto, who became famous for successfully developing the compressed charge internal combustion engine - the Otto engine.  

Assembly lines

Henry Ford on  the other hand wasn't an inventor nor an innovator as many have been led to believe, but he was rather a business magnate and a captain of  industry, who formed the Ford Motor Company, and sponsored the development of the "assembly line technique" for vehicle mass  production. One can therefore confidently say that their combined efforts, without diminishing any other contributor's efforts by the very least, over a period of some 200 years, are partially responsible for the social changes and economic development that shaped  societies that we live in today. This was  the infancy of the Automotive industry.

However, compared the Industrial revolution, modern day electronics would be equivalent to a Global Coup. Initially there was the  vacuum tube aka the electron tube, colloquially known as a valve. It gave way to the trusty transistor and discrete components which gave rise to the  analogue Integrated Circuit (IC) aka chip, followed by digital Transistor/Transistor logic (TTL) chips, followed by complementary  metal oxide semiconductors (CMOS), then digital semiconductors like ROM (digital read only memory), RAM (random access memory),  EEPROM (electronically erasable programmable read only memory), followed by large scale integration chips and VSLI (Very Large Scale  Integration Chips). 

Electronics and Software

With the advent of multilayer circuit boards and surface mounted technology, microcontroller SoC (system on a chip)  and microprocessors (µP) became pervasive. Assembler language was superseded by several high level languages for programmable chips and  software programming sat at the heart of most electronic devices and electronic systems. All of this happened in 50 years of electronics  as opposed  to 200 years of mechanical devices.

So you may ask, what has all this history to do with Volkswagen, Audi, Seat and Skoda and for that matter all other modes of transport  from plans to trains? Well the short answer, everything! Much like the Industrial Revolution with its mechanical ingenuity;  cars and planes were also predominantly mechanical since its inception, its mechanical ignition system was prone to imprecise ignition timing, resulting in improper fuel mixture burn, thus increasing its exhaust pollution. 

With the rise of telecommunications, so did  the electric wires, and electrically controlled gauges, relays and switches in cars and planes multiplied. The ever inflating cost of  gasoline then triggered the invention of CDI (Capacitive Discharge Ignition systems) which is in fact the first type of electronic  contraption integrated into the ignition system of a vehicle in order to, more precisely control its ignition timing, making it more  fuel efficient. 

These devices were available as add on kits and not produced as standard equipment in cars at the time. The preferred standard  equipment was the IDI  (inductive ignition system) and is the most common ignition system found on all cars built prior to 1980. It used a coil and distributor incorporating breaker points in its ignition system that was prone to ware-out due to arcing on  contact. During the 80's engines still used a coil and distributor to achieve dwell but it was somewhat computer controlled and by  the 90's the automotive computer evolved to ignition modules and the ECU, replacing the coil with a power pack. 

However, with the constant and  ever increasing price of gasoline and looming environmental concerns centred around vehicle exhaust pollution, the automotive  industry then accelerated its research and development into newer more compact fuel efficient power-train systems capable of higher  power output with enhanced robustness with a open policy towards alternative fuels.

New generation cars

So, by the 90's the Insulated-Gate Bipolar Transistor (IGBT) was introduced into the ignition system as discrete component connected  to the ECU called OBD - On-Board diagnostics. By 1993 the CAN protocol was standardized by ISO which led to its increased popularity  and adoption across the automotive industry.  By 1996 OBD had evolved to OBD-II and the discrete IGBT evolve into a IGBT module  integrated into individual coils itself. Starting from Y2k ignition systems were all ECU based but power packs were replaced by a  dedicated coil per cylinder, yet cloning the use of an Insulated-Gate Bipolar Transistor (IGBT) as discrete component connected to  the ECU. 

Communication Buses

From 2004 to 2010 the discrete Insulated-Gate Bipolar Transistor (IGBT) integrated into individual ignition coils evolved to a smart IGBT alongside the ECU.  The automotive ignition system had undergone a complete revolution which contributed significantly  to the system’s efficiency, exhaust pollution reduction, and robustness. By which time the use of wires had been minimized in  preference of a bus network which supported vehicle weight reduction and  vehicle cost. Copper wire have been replaced by fibre optic cable to facilitate faster communication. Some of the most important bus communication systems are CAN-Bus, Lin-Bus, MOST and  FlexRay.

Actuators and sensors, electronic control modules, Can-Bus and the ECU collectively facilitating Electronic Power Control (EPC) aka electronic throttle  control (ETC), Electronic Exhaust gas reticulation (EEGR), Electronic Valve Control (EVC), Electronic fuel injectors and so much  more, are just a small part of the overall influence that electronics have had on all vehicle engines. Other subsidiary programmable electronic  modules which are smaller computers in their own right now permeate cars, bikes, planes and boats, all connected together by at least three network systems. 

CAN-Bus is a multi-master twisted pair wire system reserved for high speed control systems like brakes,  whereas LIN bus is a single master, single wire system for low level communication for use by the rain sensor, sun roof, internal heating, and  the infotainment-bus, is a slow-speed system reserved for radio, GPS, internet communication, etc. Each system communicating with each  of its nodes in its provided protocol, each having different data transmission rates. By incorporating this level of electronics into cars, it has vastly improved stichometry and overall engine  performance, its economy, its driveability  and its safety besides reducing  emissions. 

Inept electronic knowledge

However, few mechanics know sufficient about electronics with its combinational logic, digital multiplexing, bits and  bytes, start and stop bits, fixed frames, software, etc to repair these cars packed with intercommunicating electronic modules. Even though scan tools have vastly increased their chances at successful repair, not knowing how to interpret fault codes further disadvantages them, not to  mention how frustrating it is for the vehicle owner who gets stuff around by incompetence. And here I’m even refereeing to the  "Automotive Technicians" employed by their respective automotive agents, who are more often than not incapable of repairing vehicles fitted with OBD-II. I'm quite sure there are several hundred if not thousands  of  VW owners who would concur.  How is it even expected for the DIY mechanic to fix it him or her self if the agents can't. Needless to say that  with continuous improvements comes great complexity and their successful  strategy to part us with our hard earned monies.

Diagnostic Trouble Codes abbreviated as DTC have been around for approx 30 years and is a component of OBD-II (onboard diagnostic system ver.2). These codes can be found stored  in the ECU's non-volatile memory for later retrieval by way of a scan tool. DTCs are displayed specific to the kind of problem that the system can or does detect from inside of a car engine/transmission, chassis, body or network.

Scan codes

In reality DTC codes can assist "automotive technicians", DIY mechanics and car owners to understand the problem with the car and possibly point them towards the nature of the problem or at the very least the system concerned. Bearing in mind many DTCs are generic but many of them are manufacturer specific and is best interpreted by consulting the car's manual.  Generic codes are defined by the EOBD / OBD-II standard and will therefore be the same for all car manufacturers.

But, let me break it down to for you. All diagnostic codes are alphanumeric as in P0XXX. It start with a letter followed by 4 numbers, as in P0303. This initial letter is P but can also be either B, C or U. They stand for Powertrain, Body, Chassis and Network respectively. The first numeral following the letter signifies whether the fault is generic of manufacturer specific. Since its a 0, its a generic code but if had a 1 then it would be manufacturer specific. The number 3  following the first 0 can be any numeral between 1 and 9. This number directs you to the subsystem of the car and is as follows.


Px1xx Air and fuel metering
Px2xx Air and fuel metering
Px3xx Ignition system and misfires
Px4xx Auxiliary  / additional emission control
Px5xx Speed control and idle regulation
Px6xx Communication /computer output signals
Px7xx Transmission
Px8xx Transmission
Px9xx Control modules, input and output signals

The final two numbers (xx) designate the individual components / sensors /actuator that threw the error. For example P0300 says, it's a powertrain error, it's generic in nature, it's in the ignition system and it's a random misfire. 

Whereas P0301 says misfire by cylinder No. 1,
Whereas P0304 says misfire by cylinder No. 4,
Whereas P0308 says misfire by cylinder No. 8,
Whereas P0312 says misfire by cylinder No. 12,

Likewise P0403 says, its a powetrain error, it's generic in nature, it's in the auxiliary / emission system and that the "Exhaust gas recirculation control malfunctioned"

Likewise P0501 says, its a powetrain error, it's generic in nature, it's in the speed control/regulation circuit and it's the "Vehicle speed sensor is out of range".

Like wise P0656 says,its a powetrain error, it's generic in nature, its in the computer/communication system and that its the "Fuel level output electrical sensor/circuit" 

Then there are also VAG specific 5 number numerical codes that coincide with P,B,C and U codes, like 16692 which coincides with P0308 (Misfire Detected on Cylinder 8)

And 17026 which coincides with P0642 (Knock Control Control Module Malfunction)