Tuesday, October 21, 2014

EPC DEMYSTIFIED CONTINUED 2


Continued from EPC DEMYSTIFIED CONTINUED 1.


  ...  I only became aware of this when my EPC light went on due to the knock sensor. See picture blog.  More...


 PART 3


BREAKING THE CODE

What needs to be mentioned as a basis of understanding, is that OBD (on-Board Diagnostics) was introduced in the 70's along with CDI (capacitive discharge ignition systems) as DIY kits. Few cars had fuel injectors, points and coils were fast being taken over by electronic modules. During this time some standards were introduced but they were not very well defined and as such manufacturers developed their own and applied their specific systems and developed their own code descriptions which later became known as OBD1. This was considered undesirable and counterproductive since none franchised service, and general mechanical repair centers had to purchase different scan tools, interface cables and connectors, skills and manuals for each make and model of car they specialized in. This resulted in vehicle diagnostics becoming unwieldy expensive. In February of 1986, Robert Bosch founder of Bosch, introduced the CAN (Controller Area Network) serial bus system to  the Society of Automotive  Engineers (SAE) in motor town of Detroit.

This influenced the  Society of Automotive  Engineers (SAE) who subsequently drafted a list of standards and practices that aught to be implemented by all automobile  manufacturers and recommended them to the Environmental Protection Agency (EPA). The EPA weighed-up these standards and recommendations, acknowledged their benefits, and adopted them. The standards criteria included a precisely defined diagnostic connector for each auto manufacturer, a standard scan tool and a common electrical communications protocol and a common data format, and the ability to monitor other
vehicle parameters. Lastly that the standard scan tool should interface with vehicles of all manufacturer. It also included mandatory definitions and descriptions for certain emission control system  defects which was labeled the ‘P0’ Codes. Manufacturers were allowed to generate and use their own ‘manufacturer specific code descriptions’ known as ‘P1’ Codes. This collaboration of standards became known as OBDII, (OBD2) and was adopted for implementation by January of 1996. Two types of scanner codes, namely manufacturers codes like VAG codes and SEA Codes are now the standard practice.

OBD-II  

As mentioned above, Powertrain Control Module (PCM) error codes are assigned the prefix P and pertain to the, Engine management, Transmission management, Fuel Pump and Gasoline Management, Automatic Transmission – Hydraulic Control, Emission control system, evaporative emission purge control (HVAC), Auxiliary module management and other some 0n-board Hybrid application.  For example P1340  suggests that the Powertrain triggered a DTC and describes it as an "Crankshaft-/Camshaft Position Sensor Signals Out of Sequence"

From the above example it would thus be easy to interpret the DTC below relating to EPC (Electronic Power Control)

DTC (VAG)   DTC (SAE)  Society of Automotive  Engineers

16504 P0120 Throttle Position Sensor A - Circuit Malfunction
16505 P0121 Throttle Position Sensor A - Circuit - Performance Problem - Out of Range
16506 P0122 Throttle Position Sensor A Circuit - Low Voltage Input
16507 P0123 Throttle Position Sensor A Circuit - High Voltage Input
16894 P0510 Throttle Position Sensor - Closed Switch- idle micro-switches -F60 malfunctioning
17951 P1543 Throttle Actuation Potentiometer - Signal too Low
17952 P1544 Throttle Actuation Potentiometer - Signal too High
17913 P1505 Throttle idle micro-switches -F60 not/short-circuit opens
17914 P1506 Throttle idle micro-switches - Switch Does Not Open/Short to Ground
17988 P1580 Throttle Actuator (B1) Fault - May be caused by low battery if found with 16487 (P0103)

18038 P1630 Accelerator Pedal Position -G79 signal too small  (low)
18039 P1631 Accelerator Pedal Position -G79 signal too largely (high)
18040 P1632 Accelerator Pedal Position -G79 supply voltage malfunction
18041 P1633 Accelerator Pedal Position -G185 signal too small
18042 P1634 Accelerator Pedal Position -G185 signal too largely
18047 P1639 Accelerator Pedal Position 1+2 Range/Performance -G79 and -G185 implausible signal
18048 P1640 Internal Controller Module defective (EEPROM) Error

EPC Circuit.

The EPC  circuit consists of a number of disparate components that control and supervise, regulate and determine the throttle valve position at all times. They include;

1) the accelerator pedal position sender (TP sensor G69)
2) the accelerator pedal position sender -2, (G185)
3) Black 6-pin plug with 6-pin with Gold plated contacts

NB! The above three components are part of the accelerator pedal.

4) the throttle valve control module (unit),
5) the K132 EPC fault lamp, (electronic throttle control fault indicator)
6) the engine control module (unit).

Firstly we going to do a test on components 1, 2 and 3 above. To do this test, you need a Fluke multimeter or similar for a voltage and continuity / resistance test. Unplug the 6-pin plug from the accelerator pedal and switch on the ignition. Connect the multimeter and check for a 4.5 volt reading between;-

pin 1 and ground, then between pin 1 and pin 5
Pin 2 and ground, then between pin 2 and 3.
If tests prove to be "OK", switch ignition off.
Do additional checks for short circuits between one another and ground and if this checks "OK",

Locate the ECU, normally inside cowl. Disconnect the ECU from its socket, identify pins 34 & 34, 35 & 36, and 72 & 73 on the socket. Disconnect the 6-pin plug from the accelerator pedal once again and check for continuity between this plug and the ECU socket. There should be continuity between pins:-

1 of the 6-pin plug and pin 72 of the ECU socket.
2 of the 6-pin plug and pin 73 of the ECU socket.
3 of the 6-pin plug and pin 36 of the ECU socket.
4 of the 6-pin plug and pin 35 of the ECU socket.
5 of the 6-pin plug and pin 33 of the ECU socket.
6 of the 6-pin plug and pin 34 of the ECU socket.

Any resistance above 1.5ohms should be investigated for corrosion. This often causes the engine to surge (idle unevenly or rather breaths) However, if this test proves "OK" and no wiring malfunction is detected, replace G69 and G185 (single unit) on the accelerator pedal. NB! these components are non adjustable and needs to be replaced as a whole.

When the ignition is turned on, the ECU checks all EPC components necessary for the proper  functioning of the Electronic Power Control. If a malfunction is detected in the EPC (Electronic Power Control) system whilst the engine is running, the ECM will simultaneously activate the EPC (Electronic Power Control) warning light and make an entry of this malfunction in  the ECU (electronic Control unit) DTC (Diagnostic Trouble Codes non-volatile memory.  By a process of eliminate the EPC fault can be fixed.

The list below categorises VW and Audi manufacturer predetermined data groups which varies depending on the vehicle, year, engine, engine code and management system on board.

Group Number / Group Category

1–9     General engine activity data
10–19 Ignition data
20–29 Knock control data
30–39 02 sensor control system data
40–49 Three-way CAT data
50–59 Engine speed control data
60–69 Throttle drive data
70–79 Emissions reduction data
80–89 Special function data
90–97 Power increase data
98–100 Compatibility data
101–109 Fuel Ignition data
110–119 Boost pressure control data
120–129 Control unit communication data
130–150 Special info data

Based on the data from the above table EPC problems are associated with group 60-69. However, on Expert Systems Diagnostics Group 60, holds the EPC Adaptation data, group 61 holds EPC-system 1 data and group 62 holds the EPC system 2 data. Group 66 holds the speed-o-cruise data.

NB! If you found this information useful, please link to this page.

EPC DEMYSTIFIED CONTINUED 1


Continued from EPC DEMYSTIFIED.  


  ....But it’s not that simple. There is a lot more to it than meets the eye.....

 PART 2



But it’s not that simple. There is a lot more to it than meets the eye. Cars exclusively use embedded microcontrollers (µContollers) with embedded firmware in preference to microprocessors with loadable software. In order for a microprocessor to function properly in any device, it must contain dedicated internal circuitry and firmware specific to its function, have inputs and outputs and an oscillator circuit among other circuitry and an OS (Operating system). A DVR (Digital Video recorder), or a PVR (personal Video recorder) or a set-top-box or embedded network appliance or data router are just a few examples of such systems. µControllers  are less significant and less sophisticated than microprocessors, more dedicated to its specific need, often cheaper, faster, safer and smaller. Embedded µControllers are therefore the natural choice for car manufacturers. And there are several manufactures that produce µControllers families specifically for the motor trade.


So it should be understood that companies like Bosch, Digifant, Delco  and other engine management ECU manufacturers and electronic module manufacturers uses the same microcontroller chip families or similar microcontroller chip families, designed and manufactured for them by a selected few silicon chip manufacturers.  In the same vein, computer manufacturers like IBM, Dell, Sony, Toshiba and Lenovo, etc. all use microprocessors manufactured by Intel Corporation or AMD in their laptops and computers, whereas Apple uses microprocessors manufactured by Motorola.

Baring in mind, that much like Motorola, Intel Corporation and AMD produces different featured microprocessor chips with different instruction sets,  along with their auxiliary support chips for low-end and high-end computers; such as 4 bit, 8bit, 16bit, 8086 family of chips, 32bit Pentiums, I5, I7, 64bit, XEON, 128bit big Endian and small Endian microprocessors etc; so does Infineon, Altera, Freescale, Atmel and ARM etc, manufacture different featured microcontroller chips for both low-end cars and high-end cars which are specifically chosen for their internal features and software by the various ECU and electronic module manufacturers like  Bosch,  LUCAS, DENSO, Delco, DELPHI, FENIX, HITACHI, HELLA,  MARELLI, Siemens, etc. These microcontroller chip families can roughly be categorized into four sub sectors, those specific to Powertrain functions (P), those specific to the Body and Safety functions (B), those with specific functions for Chassis (C) and those specific to Internal Convenience & communication(U).

In a nutshell all the sub systems in your vehicle are controlled by these on-board computer chips, each at the heart of an electronic module flanked by associated components and sensors. Each of these modules are in fact a fully fledged computer in its own right, situated in various positions throughout the car and linked together by a wired networked called a network bus and all are accessible through the Databus diagnostic interface for adaptation.

When the ignition is switched on, several dashboard warning lamps light-up and stays lit for the duration of the internal test cycle (<30 seconds). Should all tests check OK, all lights goes however if all systems does not check out OK, the relevant light will stay on and a fault will be logged in memory . After the car is started, the ECU monitors all sensors  and continually takes readings from the complete range of powertrain modules and sensors. These readings are then compared with default readings stored in the operational logic of the  system. Should the sensor reading coincide and agree with the stored program value or values, the microcontroller will send the  required outputs to the relevant actuators, for example the injectors. If the sensor readings differ and are out of specification,   "not within the required limits",  it will take another and if this sensor reading continues to be ‘out of limits’ a DTC will be triggered and sent to non-volatile memory. Depending on the nature of the fault, the embedded program may or may not instruct the microcontroller to make internal changes, thus operate on different criteria until a repair is effected, or until the fault has been cleared.

So whenever a mechanical or electronic problem arises in either the Powertrain (P), the Body (B), the Chassis (C) or the internal Conveniences & Communication (U) areas, the relevant module or modules triggers the on-board self diagnostics program and generates a DTC (Diagnostic Trouble Code) which is then stored in the non-volatile memory of the ECU for later retrieval by mechanical technicians. At the point When a DTC code is logged in memory, the system self-diagnosis system also alerts the driver with a visible indication  of trouble by turning on a warning light on the dashboard like the "EPC light", or the "Malfunction Indicator Lamp" (MIL) which on European cars is known as the "Check Engine Light". This doesn't tell you  the nature of the problem, even though it could be something serious, or not. After the necessary repairs are completed, a diagnostic scan tool should be used to clear the DTC errors  and to turn the malfunction indicator light (MIL) or EPC light off. Thereafter the car should be taken on a short test dive to ascertain that the previous drive issue or issues are resolved. Then the car should be hooked up to the diagnostic scan tool once again in order  to confirms that the DTC or DTCs is also no longer present.

The nature of such mechanical problem may  prevent the engine from starting or it may idle erratically, switch off immediately after starting, refuse to rev higher than 1500 rpm and impede driveability (limp mode), difficult cold starting, misfire, lazy acceleration, high idling speed, fluctuating rev counter, excessive fuel consumption, difficult warm starting, excessive black smoke, poor engine response or emits blue/grey smoke,  etc ... Each of these faults and so many others each produce individualized codes.   In most cases it would be expedient to engage the services of a roll-back to get your car to a VW service center so that diagnostics can be run on the car.

With sufficient knowledge and an appropriate diagnostic apparatus (Autoboss, Pico Scope, Range, VCDS, AutoEnginuity,  ScanXLpro), code reader or scanner, plugged into the car's 16 pin diagnostic plug, mechanical minded persons can read these faults, print then or save them to an SD card or harddrive, send signals and communicate with the ECUs, read the measured values and interrogate the actuators. The DTC in memory however do not identify the part that has gone faulty but rather provides you  with a general idea to its area of origin. Often long before a DTC code is generated the fault may already have existed so when the you view the DTC it could show that the fault occurred twice of thrice or even six times before. The ECU software is designed to monitor the frequency of error and if it is an isolated occurrence the ECU clears the fault after a certain distance is traveled but that dependent on the severity of the fault. For arguement's sake lets say 300kms. If it happens once in 300kms it could automatically clears the fault but should it happen four times during the same distance a DTC will be registered, the car could go into limp mode since it may be unsafe to drive the car if it's a breaking or steering issue, or shut the engine off if the O2 sensor went faulty and can't regulate the smoke pollution, or disable starting if the knock sensor triggered the DTC as there may be no oil in sump which could amount to a very expensive engine repair. In the case of the latter, the oil light should have illuminated long before the knock sensor shuts the engine off. However I have encountered a problem with the wires that plug into the oil sensor that became brittle due to engine heat and  subsequently broke off. As a result the sender  sent the low oil condition but it never arrived at the the ECU hence did not turn-on the oil-low light. I only became aware of this when my EPC light went on due to the knock sensor. See picture in blog.   More ...



EPC DEMYSTIFIED


EPC DEMYSTIFIED IN THREE PARTS

PART 1


In a global village where defined lines between languages and nationalities, technologies and terminologies have become completely blurred, it is important to create terms of reference in discussions, so that we are all on the same page but pronunciation can at times offend the ear. To elaborate, some people say "tomarto" (tomato) some say "tomayto", some say micro computer and some say microprocessor, some say Electronic power control (EPC) some say Electronic Pedal control (EPC). But that's just semantics, the bottom line remains, that it establishes a common ground for people of different geographical spaces to discuss common topics.

In response to the hoards of queries I recently received and the abundance of confusion there is out there about EPC (Electronic Power Control); and in reply to the thousands of e-mails I received regarding EPC (Electronic Power Control) that I haven’t been able to reply to as yet nor will ever be able to, I decided to dedicate the next few episodes of my blog to explaining the EPC (Electronic Power Control) problem many VW drivers and VW owners are having with their cars as if they were two year olds. (Not that two year olds can relate the subject at hand).

I have explained EPC in previous blogs, namely EPC light revisited explained and EPC why-engine-light-comes-on, however, I am going to elaborate on the EPC (Electronic Power Control)  concept and demystify it for the benefit of all these people mentioned above and all those destined to encounter this problem at some time or the other. The question is not if you will encounter an EPC problem but rather when you going to encounter an EPC problem, its just a matter of time. Be that as it may, for the sake of simplicity, and by analogy, I'm going to compare the workings of the EPC (Electronic Power Control) in a car to that of a PC (personal Computer) which in my humble opinion will aid understanding.  So here goes....

Electronics as a whole has intrinsically influenced human life globally, especially since the advent of the silicon chip. Through the evolution of said silicon chip, Microprocessors have become so common place, that it finds itself in virtually every modern day technological advancement from computers to televisions, cell phones to cameras, medical equipment to the very cars we drive, to mention but a few. As a result virtually everyone out-there, has heard of, or are familiar with the terms microprocessor, microcomputer or just computer, and as such, it establishes a basis to discuss familiar concepts. Most people in the "Secular World" either owns a computer or uses computers and accordingly have some understanding of its hardware and its software, and how well these complement each other and seamlessly work together. I mentioned this purely in preparation to my assertion that  follows. However, all those non-technical and all-thumbs people and those  who say "you don't have to know how an engine works in order to drive a car", are totally excused.

EPC for Hands-on Dudes, Savvy Ladies and other pragmatic people.
Computers can roughly be subdivided into building blocks, each of which is responsible for a specific function or a collection of functions. As such a combination of these specific functions gives rise to the correct and proper functionality of the computer or computer based device. For instance, the computer hard drive functions as the storage unit that holds the operating system, application programs and user data. The DVD Rom, serial port, keyboard and mouse acts as input devices. Whereas and the speakers, printer & screen act as output devices, doubling-up as the interfaces of information interchange between man and machine (computer). The motherboard houses the CPU (central Processing Unit / Microprocessor chip) it ancillary / auxiliary timing chips, control and data buses, RAM and sub circuitry for  AGP, PCI, MR1, PCMCIA, USB, Ethernet, Fire wire, parallel connectivity, etc. When all these specific components play together nicely, we are guaranteed a fully functional computer and a happy computer user.

Likewise the car can be subdivided into building blocks each responsible for a specific function. In this instance, the engine is the source of propulsion which delivers it to the rest of the drive train. The instrument panel, the steering wheel, the transmission and the braking system constitute some of the input and output devices, also   doubling-up as the interfaces of information interchange between man and machine (car). The electrical system; the ECU (Motronic control unit), Control unit within the dash,  along with its auxiliary modules, oversees the overall timing, sensor, actuator, control and data bus, as well as block components like the Radio, air conditioner and central locking etc. Once again, when all these discrete components play nicely together, we have a perfectly functional car and a happy driver / owner. More...


Saturday, June 29, 2013

EPC LIGHT - REVISITED


VW POLO EPC LIGHT 

Most VW Polo, Golf, Audi, Passat and  Skoda  vehicles and probably every other VAG cars appears to have problems lately. In one sentence, the most common of these problems seems to be on obd diagnostics the culprit being the  wiring that interconnect all the electronic modules, aka the OBD II / CANbus. Virtually every car diagnostic test done on several different VAG cars produced the same faults. This implies that they are common, since they are recurring on different owners cars.  I can relate to this from my Television engineering days, when several same-make and same-model televisions all appeared to give the same problems. These VAG cars all seemed to have Intermittent / Implausible messages on the Data Bus and its highly unlikely that it could be the electronic modules themselves that are intermittent. Should this be the case, each and every one of these VAG cars then needs to be recalled because it looks like a defective design or assembly line problem.  But that's  wishfully thinking on my part which will obviously be met with and answer like - highly unlikely.

Wiring harnesses and cable assemblies for electrical buses interconnecting several MOSFET fast switching electronic modules each having an edge connector / plug whether it is gold plated or not, has parasitic capacitance. Add this  to the edge connector resistance and crimped wire contacts inside the plugs makes for interesting intermittent connections. The following list are faults /errors  that showed up on diagnostic tests on cars with EPC light problems, which  gives you some idea what I'm referring to. I've  abbreviated "Powertrain Data Bus" to PDB: in order to stop each fault from running onto two lines. Excessive comms errors and internal control module memory error intermittent are common faults caused by wiring harnesses.



SCAN TOOL ERROR CODES

1) 01312 - Powertrain Data Bus:  - Faulty

2) 18034 - PDB: error P1626 Missing Message from TCU  (Transmission Control Unit)
3) 18043 - PDB: error  P1635 Missing Message from A/C Controller
4) 18044 - PDB: error  P1636 Missing Message from Airbag Controller
5) 18058 - PDB: error  P1650 Missing Message from Instrument Cluster
6) 18270 - PDB: error  P1862 Missing Message from Instrument Cluster 

7) 18055 - PDB: error  P1647 Check Coding of ECUs
8) 18056 - PDB: error  P1648 Failure
9) 18045 - PDB: error  P1637 Missing Message from Electric Load Controller
A) 18097 - PDB: error  P1689 Implausible Message from Elect. Load Controller

B) 18104 - PDB: error  P1696 Implausible Message from Steering Column Controller
C) 18107 - PDB: error  P1699 Missing Message from Steering Wheel Electronics

D) 18057 - PDB: error  P1649 Missing Message from ABS Controller
E) 18259 - PDB: error  P1851 Missing Message from ABS Controller
F) 18090 - PDB: error  P1682 Implausible Message from ABS Controller
G) 18261 - PDB: error  P1853 Implausible Message from ABS Controller

Implausible signal means that it is "intermittent", even intermittent at the time the diagnostic tester was interfacing with the ECU's, TCU's, STC's ABS's, A/C etc... "Missing Message" implies absolutely no contact (Open Circuit) with the respective modules at the time of testing. Since VAG cars became inundated with electronic modules, our individual cars each have a few hundred more electrical connections than the previous generation of cars each and everyone of them subject to the tresses and strains of  the bumps on uneven roads and spirited driving. Add engine heat, steam, dampness and other weather conditions to this equation and suddenly these connections become tarnished over time. Tarnished connections are certainly not electrically sound and one way to clean these contacts is with contact spray but graphite or a grey ink rubber would be more effective to clean the tarnish off the gold plated PCB edge connectors. The Bentely VW manual suggest replacement of the whole wiring harness if  any problems arise but it comes at a cost of  $798.00 and that's for a 2007 VW Polo highline. I would hate to know what it would cost for a 2013 Volkswagen Touareg or 2013 Volkswagen Amrok not to mention 2013 Audi A8 or Audi TT .

VAG cars are really nippy and a joy to drive and I'm certain the bulk of VAG car owners enjoy spirited driving but many many VAG car driver probably regret this since they only experienced  EPC light troubles after they did some real spirited driving. I know this is absolutely true for Audi TT drivers who complained that their cars were fin until they gave it a nice workout. It is obvious centrifugal force, torque, tension, flexing, wind resistance and inertia plays their respective roles on the plugs and connectors. The EPC Light problems above, D through G appears to dictate that the ABS Controller is faulty or its edge connector / plug is faulty or the harness is faulty. B through C suggest that the Steering Wheel Controller is faulty or its edge connector / plug is faulty or the harness is faulty is causing the EPC light  to light up. Numbers 5&6 seems to favour the Instrument Cluster as faulty or its edge connector / plug is faulty or the harness is faulty which causes the EPC light to light up. Number 9 and letter A seems to blame the Electric Load Controller for triggering the EPC light. Numbers 1-4 and 7&8 seems to suggest some other electronic module caused the EPC light to light up. All these modules have one thing in common, they are all associated with the Powertrain Data Bus. In essence any module associated with the Powertrain Data Bus can cause the EPC light on VW Polo or other VAG cars to trigger.


THE SECRET TO MAKING MONEY ONLINE.
NB! If you found this information useful, please link to this page.

More on EPC light DEMYSTIFIED....

Friday, June 14, 2013

VW BLUEMOTION


VW BLUEMOTION VS SIEMENS ELECTRIC

In our modern world with its ever rising energy demand, environmental issues have become everyone's concern, and it's imperative that each and every one of us  do our bit for the environment, companies and corporations included.  With our limited fossil fuel and oil resources, alongside stricter environmental and climate protection regulations we need to rethink our driving habits to achieve greater future sustainability and energy efficiency.  Several large corporations across the globe are slowly becoming more environmentally aware through public pressure and their production of “greenovation”. Volkswagen South Africa is such a company yet there are still numerous other large corporations totally negligent, even unthinking, almost Eco oblivious, hard at the process that is destroying our planet day by day.

Volkswagen launched VW Polo BlueMotion and the “Think Blue” concept in 2005, which is their holistic approach to ecological sustainability and underpins their brand philosophy and their commitment to global environmental responsibility. Some time in  2012, Volkswagen announced its intention or rather its aspiration to become the leading car manufacturer in the world by 2018. By which time, they  intend to reduce energy and water consumption, waste, solvent emissions and CO2  emissions by 25% relative to its 2010 values. Volkswagen’s Uitenhage Plant is already hard at work to become a “Think Blue Factory”  since its new world-class press line consumes an astounding 30% less energy than conventional press lines. Currently Volkswagen's award winning Polo BlueMotion is the most successful environmentally friendly car label, using the most fuel efficient BlueMotion  technologies which has subsequently been extended to Volkswagen Golf BlueMotionVolkswagen CC BlueMotion, Tiguan  BlueMotion, New Touareg BlueMotion.


VW Polo BlueMotion 1.2L Stop-start technology - 4.4 Litres/100km

Electric vehicles 

BlueMotion technology is really great and suffices as eco-tech for today's car  however, will Volkswagen really  become the leading car manufacturer in the world by 2018 in the presence of Electric vehicles  which can be powered by electricity generated from renewable sources of energy.  German Electronics Company Siemens showcased its "eChopper" electric bike and eRuf roadster at the COP17 in Durban late in 2011. Siemens is not a car manufacturer but with many years of experience in energy, mobility, and IT, is
perfectly positioned to pioneer a new era of sustainable transport.

Way back in 1881, German Electronics Company Siemens  rolled out  the world’s first electric tram in Berlin and by 1905, Siemens built the first “Elektrische Viktoria” (“Electric Victoria”), an  electric car used as elegant hotel taxis or delivery vehicles in Berlin. By the 20th century, Siemens became the leading supplier of electric drives for railways. Today Siemens uses its extensive expertise in energy, mobility, and IT to refine the technology for electric cars and large-scale fleet trials.  Since April 2013, approximately 100 Siemens employees has been test driving electric cars for everyday use and assist to optimize the interaction between the electrics cars and the electricity grid. Just five years ago, this seemed to be a vision for the distant future.

Porsche eRuf Roadster courtesty Siemens


Quiet electric cars  with  zero-emissions are especially ideal for cities and are currently the only means of transport that also enables a clean solution for individual mobility. Electric cars, electric bicycles, and electric scooters are already gaining in popularity for local usage and if  electric cars are to make a real breakthrough, the  automotive and electrical industries need to form joint ventures to setup the necessary infrastructure like charging stations, for electromobility.  Is there a future for Bluemotion technology  if  German car manufacturer Volkswagen  and German Electronics giant Siemens decide to produce our electric VW's of the future? VW has the  e-Co-Motion electric van and the XL1 hybrid. Siemens is currently one of the top automobile electronic module manufacturers. The first images below is VW's  electric concept car and the second is VW's first electric production car called  the  e-Up capable of 150 km per charge.


Volkswagen's single-seater electric concept car called the Nils.
VW's first first eGolf 


Wednesday, May 15, 2013

Volkswagen Electronics


VOLKSWAGEN ELECTRONICS

AUDI  MODULE CODING

Electronics has taken over the modern day car, a trend that started prior to 1994. Since then  motor vehicle electronics technology has taken on a completely different form. With the advent of OBD (On-Board Diagnostics) there has been strides to standardize automotive electronics in all vehicles with relative success. With the arrival OBD II automotive electronics standardization was close to uniform, however there were other derivatives, among which was EOBD (European OBD). Thereafter, CAN-Bus was introduced which is now the defacto standard for all cars built after 2008 internationally. All cars built from 2012 only sports CAN-Bus,  and are not backward compatible to older ODB II protocols, like KWP2000 for example. This move implies every auto technicians who financially invested in ODB II scanners will have to get the latest equipment in order to scan the latest cars. Just look at the Audi Q7 with its 50+ electronic modules all of which are CAN-Bus only. 
Audi Q7 has more than 50 Electronic Modules.

The hexadecimal list of Electronic Modules below are just an idea of what can be expected in current and future motor vehicles many of them having as many as 24 different module versions, many modules are incompatible with the various models of Audi, VW, Skoda and SEAT, each with its own features and coding.

02: Auto Trans
05: Acc/Start Authorization
07: Control Head
08: HVAC
0E: Media Player 1
0F: Digital Radio
11: Engine II
13: Auto Dist. Regulation
15: Airbags
16: Steering Wheel
18: Aux. Heater  
19: CAN Gateway
1E: Media Player 2  
20: High beam assist
22: All Wheel Drive
28: Heating / Air Conditioning (Rear)
2E: Media Player 3
34: Level Control
36: Driver's Seat
3C: Lane Change
3D: Special Function
42: Door Elect, Driver
47: Sound System
4F: Centr. Electr. II
52: Door Elect, Pass
55: Headlight Range
56: Radio
57: TV Tuner
5C: Lane Maintenance
61: Battery Regul.
62: Door, Left Rear
65: Tire Pressure Monitor
67: Voice Control
6C: Back-Up Camera
6D: Trunk Electronics
72: Door, Right Rear
77: Telephone


AUDI : - SOME ENGINE CONTROL UNITS AND CODINGS




Engine:

Controller:     8E0 909 518 A,
Coding:         0011581 or 0016711

Controller:    8E0 909 518 AA

Coding:         0011501

Controller:    8E0 909 518 AC
Coding:        0004501 / 0004581

Controller:     8E0 909 518 AF
Coding:         0016701 / 0016751 / 0016581

Controller:     8E0 909 518 AK
Coding:         0016711 /  0016751 /  0016501

Controller:     8E0 909 518 AL
Coding:         0011584

Controller:     8E0 909 518 AS
Coding:         0011511

Controller:    8E0 909 518 AQ  
Coding:        0011501

Controller:     8E0 909 518 F
Coding:         0016701 or 0016751

Controller:     8E0 909 518 G
Coding:         0016581


 AUDI Automatic Transmission 
codings will be covered in Future Blogs.

VIN Number identification 
will also be covered in Future Blogs.

Volkswagen’s new modular architecture 
will also be covered in Future Blogs.